Dynamic multiphase flow model of hydrate formation in marine sediments

نویسندگان

  • Xiaoli Liu
  • Peter B. Flemings
چکیده

[1] We developed a multicomponent, multiphase, fluid and heat flow model to describe hydrate formation in marine sediments; the oneand two-dimensional model accounts for the dynamic effects of hydrate formation on salinity, temperature, pressure, and hydraulic properties. Free gas supplied from depth forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: Salinity and hydrate concentration increase upward from the base of the regional hydrate stability zone (RHSZ) to the seafloor, and the base of the hydrate stability zone has significant topography. In fine-grained sediments, hydrate formation leads to rapid permeability reduction and capillary sealing to free gas. This traps gas and causes gas pressure to build up until it exceeds the overburden stress and drives gas through the RHSZ. Gas chimneys couple the free gas zone to the seafloor through high-salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lies at the three-phase boundary, and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%), located near the seafloor, which lie on the three-phase boundary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Simulation of Annular Multiphase Flow during Deep-water Horizontal Well Drilling and the Analysis of Influential Factors

A gas kick simulation model for deep-water horizontal well with diesel-based drilling fluid is presented in this paper. This model is mainly based on the mass, momentum, and energy conservation equations. The unique aspect of this model is the fluid-gas coupling and the change of mud properties after the gas influx from the formation. The simulation results show that the gas in an annulus disso...

متن کامل

Preferential Mode of gas invasion in sediments: Grain- scale mechanistic model of coupled multiphase fluid flow and sediment mechanics

Preferential Mode of gas invasion in sediments: Grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics. " J. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits ...

متن کامل

Methane Hydrate Formation in Marine Sediment from South China Sea with Different Water Saturations

The kinetics of methane hydrate formation in marine sediments with different water saturations are important to assess the feasibility of the hydrate production and understand the process of the secondary hydrate formation in the gas production from hydrate reservoir. In this paper, the behaviors of methane hydrate formation in marine sediments from the South China Sea at different water satura...

متن کامل

Effect of Overpressure on Gas Hydrate Distribution

The effect of overpressure on gas hydrate and free gas distribution in marine sediments is studied using a one-dimensional numerical model that couples sedimentation, fluid flow, and gas hydrate formation. Natural gas hydrate systems are often characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic (overpressure). To q...

متن کامل

Preferential Mode of Gas Invasion in Sediments: Grain-Scale Model of Coupled Multiphase Fluid Flow and Sediment Mechanics

We present a discrete element model for simulating, at the grain scale, gas migration in brine-saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on grains due to pore fluid pressures, and surface tension between fluids. This model, which couples multiphase fluid flow with sediment mechanics, permits investigating the upwar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002